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Introduction

Motivation

> The price of a stock or index is fluctuate, and may have a big drop or a big rally
over a period [0, 7.
> The present decrease from the historical high
> The present increase over the historical low
S&P500, 2007 — Now

160Q

— Historical High
—— SP500
— Historical Low

120G

1000

800,

6 O I I
01—9an—2007 19-Dec-2007 05-Dec-2008 22-Nov-2009




Introduction

Mathematical Definitions

> A stochastic process {X;;¢ > 0}.

> Its drawdown and drawup processes.

DD, = Supr 7Xf, DU; =X, — ianS~
s<t s<t

» Drawdowns and drawups.
Tp(a) = inf{r>0|DD; > a},
Ty(b) = inf{r>0|DU; > b}.

The goal: characterize the probability P(Tp(a) < Ty(b) AT).
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Joint Distribution of Drawdown and Drawup The cases a — b

The first range time p(a) = Tp(a) A Ty(a)
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Joint Distribution of Drawdown and Drawup The cases a — b

Probability distribution

> On {Tp(a) < Ty(a)}, X7, (q) € [-a,0).
> It suffices to determine
Py(Tp(a) € dt,Ty(a) > t,X; € du), —a<u <O0.
> Connection with the hitting probability
Pyo(Tp(a) € dt,Ty(a) > t,X; € du)

= Py(ty €dt,supX; € du+a)
s<t

d
= —Py(t, €dt,supXs < u+a)du
8(1 s<t

d
= —Py(t, €dt, 114 > t)du.
a 0( > Tu+ )’4

> We have a closed-form formula for Py(Tp(a) < Ty(a) AT) under drifted
Brownian motion dynamics. (RW is similar)
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Joint Distribution of Drawdown and Drawup

Laplace transform under general diffusion dynamics: a = b

> Consider a linear diffusion X on I = (I, r) with continuous generator coefficients
and natural (or entrance) boundaries.

> The goal: Laplace transform Ex{e_lTD(”) . ][{TD(G)<TU<G)}}.

» For —a+x<u<x, A >0with Xy =x,

LX(A,u;a,a)du

—AT,

Ey{e *To(@). W47y, (a) < T (@) Xy oy it} §
d _

= %Ex{e A ]I{sup:g“ Xy<u-+a} }du

d _
= %EX{G‘ A ]I{T,1<Tu+u}}du-

> The last conditioned Laplace transform of first hitting time is known through
solutions of an ODE.
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Joint Distribution of Drawdown and Drawup The cases a — b

The conditioned Laplace transform of first hitting time

> Consider the SDE governing the linear diffusion X
dXt = u(Xr)dt+ 0-(}([)61‘4/[7 XO = X.
» For/<L<x<H<randA >0, (Lehoczky 77°)

g ()™ (H)
g (L) (H)

A —g*
—AT
Ex{e L ]I{‘L'L<‘L'H}} = 78,1

where g* and h* are any two independent solutions of the ODE

1 5 af _

» For constant parameter case (X is a drifted Brownian motion), g’L and i* are
exponential functions.
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Joint Distribution of Drawdown and Drawup e
The ¢

The cases a

Path decomposition

> If a > b, the strong Markov property of linear diffusion facilitate the use of
Laplace transform and path decomposition.
» For any path in {Tp(a) < Ty(b)}

1. {X;;0<t<Tp(b)} ~ Range process.
2. {Xii1p) — X1p(8):0 < t < Tp(a) — Tp(b)} ~ Hitting time with drawup constraint.

=Tpla) = Tp(b)+Tx, , +b-a®Or,()-
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Joint Distribution of Drawdown and Drawup

Brownian motion X(:O.1t+0.2W[, te[0,1]; TD(0.4)A 1<TU(0.2)/\1
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Joint Distribution of Drawdown and Drawup e
The ¢

The cases a

Laplace transform a > b

» Recall that on {Tp(a) < Ty(b)} with a > b,
TD(a) =Tp (b) + TXTD([7)+b*a o eTD(b)
> Conditioning on {X7, ) = u},

—ATusb-a©Or, ) . _
Ex{e p(b) ][{Tll+b7[,097D(b)<TU(b)09TD(h)}‘XTD(b) = u}

—ATuib-a
= Ede e Tig, oy -
» For —a+x<u<x, A>0with Xy =x,

LX(A,u;a,b)du

Ex{eilTMa) ’ ][{TD(a)<TU<b)7XTD(b)€du}}

Lf(l, u;b,b) . Eu{ei)u"*""’ . ]I{T“‘/, «<Ty(h)} } du.

The strong Markov property
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Joint Distribution of Drawdown and Drawup

The strong Markov property and discrete approximation

Brownian motion Xt=0.1t+042wt, te [TD(O.Z),TD(O.A)]

01
u-A+b

> Conditioning on 0.05 1
{X1,(b) = u}, partition the o u-2a+b |
interval [u —a+ b,u] into .

. . U=3A+

n subintervals with equal -0.05f 1
length A= (a—b)/n. o P u-4a+h

» Use conditioned hitting <« |V

i i -0.15¢ A i

times to approximate. A

» Pass to the limit. The _0.oF ™ i
continuity of the sample u-z4
path and bounded oy Yy o 1
convergence theorem _oal |
justifies this. T,(0:2) ”'4ATD(0_4)

0.45 0.5 0.55 0.6 0.65




Joint Distribution of Drawdown and Drawup

Path decomposition

> Relationship between Laplace transforms

-1
E{e M Wz ry o)}
= Ex{e*lTn(tﬁ} _ Ex{e*’””(“) . ]I{TD(u)>TU(b)}}
» To get the very last Laplace transform, observe that on {Tp(a) > Ty (b)},
Tp(a) =Ty(b) +Tp(a)o b7, ().
» Using strong Markov property of linear diffusion
-1 o6y, -
Ex{e T8y ‘XTu(b)} = EXTU(b) {e )LTD@}'
> We can use reflection to find

Ex{f””(b) : ][{TD(L¢)>TU(b),XTU(,7)edu} I
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Joint Distribution of Drawdown and Drawup

The cases

Brownian motion X[:0.1H0.2W[, te [0,1]; TD(O.3)/\1<TU(O.15)/\1
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Joint Distribution of Drawdown and Drawup

The cases

Brownian motion X[:0.1H0.2W[, te [0,1]; TD(O.3)/\1<TU(O.15)/\1
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Transient signal detection

Detection of two-sided alternatives

» We sequentially observe a process {&} with the following dynamics:

th <7
dx, =
! o(X,)dt + (X, )dw;
or T>t>71
—o(X,)dt + &(X,)dw,

> probability of misidentification

PYH(Tp(a) < Ty(b)AT) = /0 ng'*(TD(a) < Ty(b)At)-Ae Mt

[ e M (T (a) € dr Ty (b) >
0

= X (Lab), (1)
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Transient signal detection

Detection of two-sided alternatives(cont)

> aggregate probability of misidentification
[PEt (To(@06(2) < Tu®) 00D ATY. Oy @)

= [ Quabif Gy,
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Insuring against drawing down before drawing up

Maximum Drawdown Protection

Digital call insurance

> Financial assets are risky.

S&P500, 2007 - Now
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> A digital call that pays I;7, (x)<7,(k)a7} can be perceived as an insurance
inst adverse e in the marke




Insuring against drawing down before drawing up
Robust replication

Maximum Drawdown Protection Sone
Semi-robust hedges

Pricing and replication

> The previously defined digital call only pays out one dollar (compensation) if
the price process X draws down by K dollars before it draws up by the equal
amount.

» Under no transaction cost and no arbitrage, the price of an option with payment
at time 7 is just the expectation of the discounted cashflow in the future.

> Let B,(T) be the price of a bond maturing at 7', consider its equivalent martingale
measure Q7 .

> The arbitrage-free price of the previously defined digital call at time ¢ is

DCP<Y(K.T) = B(T)Q{ (Tp(K) < Ty(K) AT).

> In simple models (e.g., constant parameters market model), the previous work

computes the price at time 0.
> The contribution of the work: develop replication strategy to hedge the risk of
the above digital call.

ibutions, detection and finan



Insuring against drawing down before drawing up
Robu: i

Maximum Drawdown Protection Sone
Semi-robust hedges

The Laplace Transform Approach

» Laplace transform (FFT) pricing formula

(So+K)~
Eg)r e oK) 1 (Tp(K) < TU(K))] — /SO " F(H—K,H,2)dH,

where f(L,H,A) = iEQT

= - ES [e””g~1(rfgr,§)] for L < H.

» Back to time domain

Q§,{Tp(K) < Ty(K) AT}
(So+K)~ 9
= S, a—HQgO{TH,K <Tg A T}dH.

> What about the replication at ¢ > 0?
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inst drawing down before drawing up

Maximum Drawdown Protection

Model-free Decomposition

> Let X;, M, and m; be spot price, the historical high and the historical low at time
t € [0, T] of the underlying, respectively.
> On any path in the event {Tp(K) < Ty(K) AT}, att < Tp(K) ATy (K),
> If the spot does not reach a new high by Tp(K), My, x) = M;.
> Otherwise, My, ) € (M;,m; +K).

> Replicate payoff based on the historical high when there is a crash: M7, k)

Lry (k) <1y (K)ATY

)~k ST My ) €M m+K) }

:][{TD(K):TMTD
:]I{er,KgT‘MTMﬁK:M,}
(m+K)~
+ M ][{TH—KST}S(MTH,K —H)dH.

> Find instruments with desired payoffs.
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t drawing down before drawing up
ion

Maximum Drawdown Protection SO0t
Semi-robust hedges

Hedging instruments

> An one-touch knockout is a double barrier digital option with a (low) in-barrier
L and a (high) out-barrier H, the price of this options at time ¢ before its
maturity date T is

OTKO,(L,H,T) =B,(T)QF (1, < ty AT)
=B,(T)Q! (t, <T,M;, < H).
> The payoff indicator of an one-touch knockout can be modified
OTKO,(L,H",T) = B,(T)Q! (1, < T,My, <H).
> A touch-upper-first down-and-in claim is a spread of one-touch knockouts. It
has a low barrier L and a high barrier H.
OTKO:(L,H +¢,T)— OTKO:(L,H,T
TUFDI,(L,H,T) = lim (L, H +¢, 8) (L, H,T)
£—

T

=B/(T)EZ [N{y,<1y6(Mr, —H)),

which pays one dollar at expiry if and only if the spot touches the upper barrier
H and then hits L from above before 7.

Drawdowns, Drawup, their joint distributions, detection and financial risk manag



Maximum Drawdown Protection

Semi-static replication of one-touch knockouts

> Although the previous replication is fairly robust (no model assumption), the
instruments used are rather exotic.

> Under skip-freedom and symmetry assumption, any one-touch knockout can be
replicated by single barrier one-touch options: OT;(B,T) = B,(T)Q7 (13 < T).

> We assume that the barriers of an one-touch knockout are skip-free, and when X
exit the corridor (L, H), the risk-neutral probability of hitting X; — A before T is
the same as the risk-neutral probability of hitting X; + A before T, for any A > 0.
This is satisfied by dX; = o,dW; with doydW; = 0.

» Then, ...
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t drawing down before drawing up

Maximum Drawdown Protection

Semi-robust hedges

Replication of One-touch Knockouts under Arithmetic Symmetry

We can show that at ¢ € [0, 7, A Ty A T]

)

OTKO,(L,H,T) = ¥ {OTf(Hf 2n+1)A,T)— OT,(H+ (2n+ 1A, T)},
n=0

where A = H — L.

A sketched proof.
If the spot hits L first,
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t drawing down before drawing up

Maximum Drawdown Protection

Semi-robust hedges

Replication of One-touch Knockouts under Arithmetic Symmetry

We can show that at ¢ € [0, 7, A Ty A T]

)

OTKO,(L,H,T) = ¥ {OTf(Hf 2n+1)A,T)— OT,(H+ (2n+ 1A, T)},
n=0

where A = H — L.

A sketched proof.
If the spot hits H first,
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Insur t drawing down before drawing up
Robu:
Semi-robust hedges

Maximum Drawdown Protection

Replication of One-touch Knockouts under Arithmetic Symmetry

We can show that at ¢ € [0, 7, A Ty A T]

)

OTKO,(L,H,T) = ¥ {OTf(Hf 2n+1)A,T)— OT,(H+ (2n+ 1A, T)},
n=0

where A = H — L.

A sketched proof.

If the spot hits L first,

t
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/
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L H S0

O
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Insur t drawing down before drawing up
Robu

Maximum Drawdown Protection Qerms
Semi-robust hedges

Replication of One-touch Knockouts under Arithmetic Symmetry

We can show that at ¢ € [0, 7, A Ty A T]

)

OTKO,(L,H,T) = ¥ {OTf(Hf 2n+1)A,T)— OT,(H+ (2n+ 1A, T)},
n=0

where A = H — L.

A sketched proof.
If the spot hits H first,

t
. . . ~ St
24 T h N 7 EYN
//
[ -—
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O
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t drawing down before drawing up

Maximum Drawdown Protection Qerms
Semi-robust hedges

Semi-Robust Replication of Digital Call on Maximum Drawdown (Carr)

> The maximum drawdown MDr = sup,c[o, 7] DDy, is commonly used as a
measure of the risk of holding the underlying asset over a period [0, T].

> A risk adverse investor or a portfolio manager can get protection against a loss
from the market if he or she holds a claim which pays l(MDT > K), for some
strike K > 0.

> The maximum drawdown and the maximum drawup over a period [0, 7] are
related to two stopping times: for K > 0

Tp(K) =inf{t > 0,DD; > K}, Ty(K) = inf{t > 0,DU; > K}.
Let us denote by MUt = supc (g, 7] DUs, then
{MDr > K} ={Tp(K) < T}, {MUr > K} = {Ty(K) < T}.

> Introduce another digital call for K > 0:
> Digital call on maximum drawdown

DCMP(K,T) = B(T)Q! {Tp(K) < T}.
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t drawing down before drawing up

Maximum Drawdown Protection Qerms
Semi-robust hedges

Replication of Digital Call on Maximum Drawdown (Carr)

> Under the above CAHS assumption, a digital call on maximum drawdown can
be replicated with double-one-touches (DOT):

DCYP (K, T) == B/(T) 17, (k) <1} + Lz (k) >y DOT:(M; — K, M; + K, T).

> A double-one-touch is a double barrier digital option with a high barrier H and a
low barrier L, the price of this option at time ¢ before its maturity date 7 is

DOT,(L,H,T) = B/(T)QI {7} AT}, < T}.
> In the Bachelier model, using Lévy isomorphism, we have
sup Wy —W, "2 [Wi| = sup | sup We—W; | "2 sup |Wi],
s€[0,1] 1€[0,T] \s€[0.,7] 1€[0,T]

where W is a standard Brownian motion starting at 0.
> A double-one-touch can be replicated with two one-touch knockouts:

DOT,(L,H,T) = OTKO,(L,H, T) + OTKO,(H,L,T).
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Maximum Drawdown Protection

> The payoff of a digital call on the drawdown of K preceding the drawup of
equal size can be semi-statically replicated with one-touches under arithmetic
symmetry assumption.

> The replication can also be done with vanilla options (payoff only depends on
the value of the stock at maturity). This is the reflection principle: If H > M;

OT,(H,T) = B,(T)Q! (ty < T) =2B,(T)Q! (St > H).

» We also developed replicating strategies under geometric symmetry. In
particular, under the Black-Scholes model

dS[ = rS[dt+ GS;dW[

and its independent time-changes Sg, (B is a continuous increasing process and
dB,dW; = 0), the replicating strategies work well.
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Conclusion Remarks

Summary

> We study drawdown and drawup processes in this work.

> The probability that a drawdown of size a precedes a drawup of size b is fully
characterized for biased simple random walk, drifted Brownian motion and
more general linear diffusion with continuous generator coefficients.

» Digital insurance can be considered in terms of drawdowns and drawups.
Pricing can be done analytically for classical models.

» Robust and semi-robust replicating strategies of the digital insurance are
developed. We considered both the arithmetic symmetry and the more involved
geometric symmetry in the paper. These strategies are robust to independent
continuous time-changes.

> The drawup of log-likelihood ratio process has optimal property when used as a
means of detecting abrupt changes.

> We proved the asymptotic optimality of N-CUSUM stopping rule in the

multi-source observation setting. In the paper we considered both the Brownian
motion system and the discrete-time observation system.
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